MR Miniature Linear Guide Series ST Miniature Stroke Slide Series CPC reserves the right to revise any information(technical details) any time without notice, for printing mistakes or any other incidental mistakes. We take no responsibility. HEADQUARTERS CHIEFTEK PRECISION Co., LTD. No.3, Dall ist Rd., Sinshih Township, Tainan Science Park, 741-45 Tainan, Taiwan, R.O.C TEL:+886-6-505 5858 Http://www.chieftek.com E-mal:service@mail.chieftek.com CHIEFTEK PRECISION USA 4881 Murietta Street. Chino, CA. 91710 Tel: +1-909-628-9300 Fax: +1-909-628-7171 cpc Europa GmbH Industriepark 314, D-78244 Gottmadingen, Germany TEL:+49-7731-59130-38 FAX:+49-7731-59130-28 CHIEFTEK MACHINERY KUNSHAN Co., LTD. No.1188, Hongqiao Rd, Kunshan, Jiangsu, P.R. China TEL:+86-512-5525 2831 FAX:+86-512-5525 2851 CPC CHIEFTEK PRECISION Co., LTD. MR-02-O62-EN 44 46 47 48 50 ## Company Profile Chieftek Precision Co., Ltd. (cpc), revolves around a core team of professional managers, engineers and highly skilled technicians. Together, the company devotes its efforts toward R&D, the manufacturing of high quality linear motion components and long-term sustainability. cpc attained its initial success by focusing on the miniature linear motion field with its highly acclaimed MR series linear guides. These found major use in precision measurement and inspection, semiconductor and other related electronic industries. As business grew, so did the company's product line. Today, cpc's linear guides range from our vaulted MR seried, the general purpose ARC series for automation machine tools, HRC and ERC series for heavy load machine tools, to the RR series with roller bearings for applications requiring high rigidity and precision under extra heavy loads. cpc's linear guides are compatible with industry standard sizes while providing superior rigidity and precision. Not satisfied at being just a mechanical component provider, cpc began an intensive R&D effort into the field of linear motors. The result is the P series ironless linear motors, with the highest thrust density and efficiency of its kind, quickly followed by the C series iron-core linear motor the most compact linear motor in the industry and delivering consistently reliable high thrust with low cogging force. To lower the technical barrier for customers more familiar with tradition belt or ball screw driven systems, cpc packaged its linear motors into the CLS/CLMS series of compact linear stages while customizing its linear motor stages, tables and subsystems. Such products integrate the linear motor, linear guide and positioning systems into a compact, ready to use package the more traditional customers without having to concern themselves with the details of mechanical, electrical and electronics integration. As linear motors cannot operate without a control system, the next logical step for cpc was to develop the TC1 series servo drive. The TC1 series features high power density, easy to use auto-tuning and an advanced feature set to aid machine builders to create their next breakthrough product. Spanning the field of mechanics, electrics and electronics, the release of TC1 sets another milestone for cpc on its path towards becoming a total mechatronics solution provider for linear motion control. ## Time line of major developments - 1998 Established - 2000 Official production of the MR size 5~15 Miniature Guide Series - 2004 Extension into size 3 and 2 miniature linear guide production - 2005 Establishment of factory operations in the Tainan Science Park - 2007 Production of the ARC/HRC Series Ball Type Standard Size Linear Guides which have achieved ISO 9001:2000 certification - 2008 Established cpc USA (Chieftek precision USA) Establishment of cpc Kunshan, China (Chieftek machinery kunshan co., ltd.) Production of the full range Ironless linear Motor P series - 2010 Establishment of cpc Europa GmbH Achievement of ISO 9001:2008 certification - 2011 New factory expansion - 2013 Wide ball type linear guide production - 2014 Achievement of ISO 14001:2000 certification Achievement of OHSAS 18001:2007 certification Achievement of CNS 15506:2011 certification Production of full range Ironcore Linear Motor C Series Mass production of CLS compact linear Motor Stage Series Standard 4-Row Roller-type ARR/HRR/LRR Linear Guide Series announced - 2015 Mass production of the TC1 AC Linear Motor Servo Driver Mass production of the CLMS Core Type Linear Motor Stage ## **Table of Contents** 6. Carbon Steel | MR Miniature Linear Guide series | | | ST Miniature Stroke Slide series | | | | | | |-------------------------------------|-------------|----|----------------------------------|--|--|--|--|--| | 1. Product Introduction | 02 | | 1. Product Introduction | | | | | | | | | | 2. Technical Information | | | | | | | 2. Technical Information | | | 3. Ordering Information | | | | | | | 2.1 Precision | 07 | | 4. Dimensions and Specifications | | | | | | | 2.2 Preload | 08 | | | | | | | | | 2.3 Lubrication | 09 | _ | | | | | | | | 2.4 Friction | 12 | | AR/HR Series Lubrication Storage | | | | | | | 2.5 Load capacity and rating life | 13 | | Testing Report | | | | | | | , , | | | | | | | | | | 3. Ordering Information | 16 | | | | | | | | | 3. Ordering information | 10 | | | | | | | | | 4. Installation Illustration | 18 | | | | | | | | | 4. Historianon mostranon | 10 | | | | | | | | | 5. Dimensions and Specifications | | | | | | | | | | 5.1 Standard MR-M SU/ZU series | 20 | | | | | | | | | 5.2 Standard MR-M SS/ZZ series | 22 | | | | | | | | | 5.3 Standard MR-M SUE/ZUE series | 24 | | | | | | | | | 5.4 Standard MR-M EE/EZ series | 26 | | | | | | | | | 5.5 Standard MR-M EU/UZ series | 28 | | | | | | | | | 5.6 Standard MR-W SU/ZU series | 30 | | | | | | | | | 5.7 Standard MR-W SS/ZZ series | 32 | | | | | | | | | 5.8 Standard MR-W SUE/ZUE series | 34 | | | | | | | | | 5.9 Standard MR-W EE/EZ series | 36 | | | | | | | | | 5.10 Standard MR-W EU/UZ series | 38 | | | | | | | | | 5.11 Standard MRU-M series - Tapped | from bottom | 40 | | | | | | | | 5.12 Wide MRU-W series - Tapped f | rom bottom | 40 | 41 Precision MR Miniature linear guide series have three accuracy grades for design selections: Precision (P), High (H), Normal (N). Lubrication storage Our Environmentally-friendly system requires less lubricant. Material All of our MR miniature linear guide series are made from heat treated stainless steel material. **cpc** | 02 ### Dustproof design ### SS series-end seal The standard end seal design can be hermetically sealed and dustproofed. This extends the product lifespan, reduces lubrication grease consumption, and ensuresa long-lasting lubrication effect. The special seal slip design also ensures a low friction force so as not to affect the product's running smoothness. ## Environmentally friendly lubrication design ### ZZ series-end seal and lubrication pad The two ends of the runner block feature a hermetic lubrication grease injection design. This is capable of bringing the lubrication grease to the raceway via continuous steel ball circulation, thereby achieving an effective long-term lubrication effect. A built-in lubrication pad can also be utilized toward prolonging lubrication further for long-term motion, reducing maintenance costs while demonstrating a superior lubrication capability during short stroke motion. ## End reinforcing design ### EE series-end seal and reinforcement plate This series utilizes two stainless steel reinforcement plates to cover the two plastic ends of the slide block completely and stainless steel screws to secure the upper and lower sides of the runner steel block, thereby strengthening the rigidity and increasing the coverage area of the end cap. This ensures faster running speeds while a gap sealing design between the reinforcement plate and slide rail enables an added wiping function Running speed Vmax=5m/s, amax=300m/s2 (60m/s² can be reached without prepressing) ### EZ series - end seal, reinforcing plate and lubrication pad The built-in lubrication pads at the two ends of the runner block conform to environmental protection requirements and reduce maintenance costs. ### EU series - end seal, stainless steel bottom seal and reinforcement plate The stainless steel bottom seal protects the runner block from unnecessary damage caused by collision with foreign objects. Due to this runner block series having our strongest protective capability, its use is recommended for environments with many iron scraps around. ### UZ series - end seal, stainless steel bottom seal, reinforcement plate and lubrication pad The lubrication pad can provide highly rigid runner blocks with better lubrication and grease storage capabilities, and reduce re-greasing time. Brand new U series Features: the built-in bottom seal does not affect the friction resistance if a clearance is smaller than 0.1mm ### SU series - end, bottom seals In addition to a normally equipped end seal, our newly designed runner block is equipped with an extra bottom seal. This prevents foreign matter from entering via the lower side of the runner block into the running rail, thereby extending the working life of the runner block * the new design is recommended for priority purchase. ### ZU series - end, bottom seals and lubrication pad A newly designed bottom seal can prevent lubrication grease from spilling below the runner block. In addition, a built-in mounted lubrication pad further strengthens the series' grease-saving effects while extending its re-greasing interval. * the new design is recommended for priority purchase ## Brand new UE series ### SUE series - end seal, bottom seal and reinforcement plate our new design includes an in-built bottom seal. This strengthens the runner block's bottom dustproofing capability while its stainless steel reinforcement plate prevents hard and rigid objects from striking at the plastic cap from the end position. This is why its
dustproofing effect is the strongest among all of our product series. * the new design is recommended for purchase in priority. ### ZUE series - end seal, bottom seal, reinforcing plate and lubrication pad The newly designed bottom seal protects lubrication grease from spilling below the runner block, with our built-in lubrication pad, an additional grease saving effect is attained, further prolonging prolonging our product's re-lubrication timeframe. * the new design is recommended for priority purchase # Embedded inverse hook design for reinforced mechanical integration When the runner block is in motion and changing direction, the circulating stainless steel balls inside the raceway generate impact force against the plastic end cap. As the demand for rapid motion in the automation industry has increased, cpc has invented inverse plastic hooks to tightly secure our miniature blocks by effectively distributing the applied stress over a larger area. ## Brand new design Suitable for : High speed belt driven mechanisms High speed carrier designs Automation linkage between stations ## High load and high moment capacity The MR Miniature Linear Guide Series is designed using two rows of recirculating balls. The design uses a Gothic profile with a 45° contact angle to achieve an equal load capacity in all directions. Within the restriction of limited space, larger stainless steel balls are used to enhance load and torsion resistance capacity. ## **Dust Proof Design** Our standard design comes equipped with an end seal that effectively restricts dust contamination and prolongs lubrication, ensuring longer product life. Our specially-designed low friction seal slips do not affect running smoothness. Under equal widthed rails, the black line indicated cpc linear guides provide greater surface contact as compared to competing products (indicated with the red-dotted line). ## 2. Technical Information ## 2.1 Precision ## Accuracy MR miniature linear guide series have three accuracy grades (P,H,N) for your choice. ## Speed The maximum speed for the standard MR-SS/ZZ,SU/ZU type is: Vmax = 3 m/s ### Maximum acceleration **Gmax = 250 m/s**² (If preload is at V0, capability of reaching 40m/s²) The maximum speed for the standard MR-EE/EZ,EU/UZ,SUE/ZUE type is: Vmax > 5 m/s Maximum acceleration **Qmax = 300 m/s²** (If preload is at V0, capable of reaching 60m/s²) ## 2. Technical Information ## 2.2 Preload ### **Preload** The MR Miniature Linear Guide series has three degrees of preload capacity: V0, VS and V1 (as described in the preload table below.) Appropriate preload levels can enhance the stiffness, precision, and torsion resistance performance of the linear guide. But an inappropriate application thereof can also negatively affect the product life and its motional resistance levels. | | | | | | | | | Table Preload | |---------------|------------|--------|--------|----------------------|--------|--------|--------|--| | Preload type | Model code | | (| App l ication | | | | | | rieloda type | Model code | 3 | 5 | 7 | 9 | 12 | 15 | Application | | Clearance | V0 | +3 - 0 | +3 - 0 | +4 - 0 | +4 - 0 | +5 - 0 | +6-0 | Very smooth | | Standard | VS | +1 - 0 | +1 - 0 | +2 - 0 | +2 - 0 | +2 - 0 | +3 - 0 | Smooth and
high precision | | Light preload | V1 | 0 0.5 | 01 | 03 | 04 | 0 5 | 06 | High rigidity
Minimizes vibration
High precision
Load balance | ## **Operating Temperature** The MR Miniature Linear Guide can operate in a range of temperatures from $-40^{\circ}\text{C} \sim +80^{\circ}\text{C}$. For short term operation, it can reach up to $+100^{\circ}\text{C}$. ## 2.3 Lubrication ### Function When operating the linear guide under sufficient lubrication conditions, a one-micron layer of oil forms at the contact zone, separating the loaded rolling components and the raceway. Sufficient lubrication will: - Reduce friction - Reduce corrosion - Reduce wear - Dissipate heat and increase service life ## **Lubrication Caution** - ZZ/ZU/EZ/UZ/ZUE Lubrication Storage block - The block already contains lubricants which can be directly installed on the machine, without the need for additional washing. - When first washing the blocks, please do not soak them in the lubricant before both the detergent and cleaning naphtha within are totally dry. The block is ready for installation only after the lubrication storage is full of the lubricant. - The linear guide must be lubricated for protection before first time use. Contaminants of any kind, weather liquid or solid, should be avoided. - The runner block should be moved back and forth during lubrication. - The lubricant can be added either manually or automatically directly onto the rail raceway. - The lubricant can be injected into the lubrication holes on either end of the runner block. - A thin layer of observable lubricant should be maintained on the surface of the rail - Re-lubrication must be completed before contamination or discoloration of the lubricant occurs. - Please notify us if product is intended for use in acidic, alkaline, or clean room applications. - Please contact our technical department for lubrication assistance if the runner block - The re-lubrication interval must be shortened if the travel stroke is < 2 or > 15 times the length of the steel body of the runner block. ### **Grease Iubrication** When grease lubrication is applied, we recommend synthetic oil-based lithium soap grease with a viscosity between ISO VG32-100. is intended for use in a wall mount configuration. ## Oil lubrication For oil lubrication, we recommend synthetic oils CLP, CGLP (based on DIN 51517) or HLP (based on DIN 51524) with a viscosity range of between ISO VG32-100 and a working temperature range between 0°C-+70°C. (We recommend ISO VG10 for use in lower temperature environments.) ## 2. Technical Information ## 2.3 Lubrication - continued ## Re-lubrication - Re-lubrication shall be applied before the lubricant in the block is contaminated or changes color. - The amount of the lubricant applied should be 1/2 of the first lubrication. When applying lubricant, this should be done until it seeps out from the device. - Re-lubrication shall be applied under steady operating temperature, with the runner block moved back and forth throughout for optimum distribution. - If the stroke is smaller than twice or greater than 15 times the steel body length of the block, the re-lubrication interval shall be shortened. | | | | Table 1 | |---------------|-------------------------|---------------|-------------------------| | Model
code | First lubrication (cm³) | Model
code | First lubrication (cm³) | | - | - | 2 W L | 0.03 | | 3 MN | 0.02 | 3 WN | 0.03 | | 3 M L | 0.03 | 3 W L | 0.04 | | 5 MN | 0.03 | 5 WN | 0.04 | | 5 M L | 0.04 | 5 W L | 0.05 | | 7 MN | 0.12 | 7 WN | 0.19 | | 7 M L | 0.16 | 7 W L | 0.23 | | 9 MN | 0.23 | 9 WN | 0.30 | | 9 M L | 0.30 | 9 W L | 0.38 | | 12 MN | 0.41 | 12 WN | 0.52 | | 12 ML | 0.51 | 12 WL | 0.66 | | 15 MN | 0.78 | 15 WN | 0.87 | | 15 ML | 1.05 | 15 WL | 1.11 | ## **Re-lubrication Interval** The re-lubrication interval depends on individual use, as the speed, load, stroke length and operating environment are all factors. Careful observation of rails and blocks is the basis to determine the optimal re-lubrication interval; as a rule of thumb, re-lubricate at least once per year. Do not apply water-based coolant liquid on the linear rails or slide. Inject lubricant through injection holes on both ends of the runner block with the recommended cpc brand injector. ## **Lubrication grease** - 00 For general applications - 01 For low-friction, low-noise applications - 02 For clean room applications - 03 For clean room and vacuum environment applications - 04 For high-speed applications - 05 For micro-oscillation applications ## **Lubrication oil** 11 For general applications, ISO V32-68 | Ordering of the lubrication injector | | | | | | | | | | | | |--------------------------------------|---------------|--|--|--|--|--|--|--|--|--|--| | <u>LUB</u> — <u>01</u> — | 18G | | | | | | | | | | | | Lubricant : | Needle model: | | | | | | | | | | | | 00 | 21G: 5M/5W | | | | | | | | | | | | 01 | 19G: 7M/7W | | | | | | | | | | | | 02 | 18G: 9M/9W | | | | | | | | | | | | 03 | 18G: 12M/12W | | | | | | | | | | | | 04 | 15G: 15M/15W | | | | | | | | | | | | 05 | | | | | | | | | | | | | 11 | | | | | | | | | | | | ## 2. Technical Information ## 2.4 Friction ## **Friction** The MR Miniature Linear Guide Series has low-friction characteristics with a stable and minor starting friction. ## **Sealing Design** The MR Miniature Linear Guide Series are enclosed by end seals on both ends of the runner block. Optional side seals can also create an all-around sealing system. | | Friction | Friction of end seal under lubrication | | | | | | | |----------------------------|---------------|--|------|-------------------------------|--|--|--|--| | | | MR size | | f end seal
er lubrication) | | | | | | | | | M | W | | | | | | F _m = μ • F | (1) | 2 | 0.08 | 0.2 | | | | | | F | Load (N) | 3 | 0.08 | 0.2 | | | | | | Fm | Friction (N) | 5 | 0.08 | 0.2 | | | | | | | | 7 | 0.1 | 0.4 | | | | | | The MR Miniature Linea | | 9 | 0.1 | 0.8 | | | | | | friction factor is app μ = | - 0.002~0.003 | 12 | 0.4 | 1.0 | | | | | | | | 15 | 1.0 | 1.0 | | | | | ## **Friction Factors** - Sealing system. - Collision between the balls during operation. - Collision between the balls and the return path. - Number of balls in the gothic arch load zone. - Resistance from lubricant to ball pressure. - Resistance caused by contaminants. ## 2.5 Load Capacity and Rating Life ## Static Load Rating Co Measuring the static load of the travel force along the acting direction, the maximum stress between the rolling balls and raceway is as follows: - If the curvature radius is lower or equal to 0.52: 4200 MP
- If the curvature radius is equal or higher to 0.6: 4600 MP. Note: Under maximum stress levels, a permanent deformation will be generated at the contact point. This corresponds roughly to about 0.0001 times the rolling element diameter. (The above is according to ISO 14728-2) | Static load safety fa | actor calculation | | | |-----------------------------------|-------------------|----------------------------------|----------------| | $S_0 = C_0 / P_0$ $S_0 = M_0 / M$ | (11)
(12) | Operation condition | S ₀ | | $S_0 = W_0 / W$ | (12) | Normal operation | 1~2 | | $P_0 = F_{max}$ $M_0 = M_{max}$ | (13)
(14) | Load with vibration or impact | 2~3 | | ···u ···max | — (1 4) | High accuracy and smooth running | ≧ 3 | ## Static load Po and moment Mo The permissible static and applied static load of the MR Miniature Linear Guide Series is limited by: - The static load of the linear guide. - The permissible load of fixed screws. - The permissible load for the connected parts of the mechanism. - The static load safety factor required for the application. The equivalent static load and static torque are the largest load and torque, please consult with formulas (13) and (14). ## Static load safety factor So In order for the linear bearing to permanently withstand potential deformation while delivering a guaranteed accuracy and reliable motion, the static load safety factor, So should be calculated with formulas (11) and (12). - So static load safety factor - Co basic static load in acting direction N - Po equivalent static load in acting direction N - Mo basic static moment in acting direction Nm - M equivalent static moment in acting direction Nm ## 2.5 Load capacity and rating life - continued ## Dynamic load rating C_{100B} For constant sized and directional loads, when the linear bearing is under such a load, the rating life of a linear guide can reach a theoretical travel distance of 100km. (The above is according to ISO 14728-1.) ### Rating life calculation = 1.26 · C_{100B} ___(2) L = rating life for 100,000 meter travel distance (m) L_h = rating life in hours (h) C₁₀₀₈ = dynamic load rating (N) P = equivalent load (N) s = length of stroke (m) n = stroke repetition (min -1) v_m = average speed (m/min) ___(5) ## Rating Life L 90% survival rate for an individual linear guide or a batch of identical linear guides in standard product material and operation conditions is calculated as above (according to ISO 14728-1 standards). When using the 50km travel standard, the dynamic load rating will exceed the ISO 14728-1 standard value by 20% or more. Formula (2) describes the relationship between the two load ratings. ## Calculation of rating life Formulas (4) and (5) can be used when the equivalent dynamic load and the average speeds are constant. ## Equivalent dynamic load and speed If the load and speed are not constant, it is important to take into account the actual load and speed as both will influence life expectancy. ## Equivalent dynamic load If there is a change in load only, the equivalent dynamic load can be calculated according to formula (6). ## **Equivalent speed** If there is a change in speed only, the equivalent speed can be calculated according to formula (7). If there are changes in both load and speed, the equivalent dynamic load can be calculated according to formula (8). amic load ic load ic load, vertical ic load, horizontal in direction of action Nm (N) (%) (N) (m/min) (m/min) Ν Nm ## Equivalent load capacities and speed calculation | $P = \sqrt[3]{\frac{q_1 \cdot F_1^3 + q_2 \cdot F_2^3 + \dots + q_n \cdot F_n^3}{100}} - \dots - (6)$ | Р | = | Equivalent dyna | |--|----|-----|--------------------| | γ | q | = | Percentage of st | | - a.v.+a.v.++a.v | F | = | Discrete load ste | | $\overline{V} = \frac{-q_1 \cdot V_1 + q_2 \cdot V_2 + \dots + q_n \cdot V_n}{100} \qquad(7)$ | _ | = | Average speed | | | V | = | Discrete speed s | | $P = \sqrt[3]{\frac{q_1 \cdot v_1 \cdot F_1^3 + q_2 \cdot v_2 \cdot F_2^3 + \dots + q_n \cdot v_n \cdot F_n^3}{100 \ \overline{v}}} (8)$ | F | = | External dynami | | . √ 100 v | F. | , = | External dynamic | | $P = F_v + F_v \qquad(9)$ | F | = | External dynamic | | $P = F_X + F_Y \qquad(9)$ | c | o = | Static load rating | | | N | = | Static moment | | $P = F + M \cdot \frac{C_0}{M_0} \qquad(10)$ | N | b = | Static moment in | | | | | | | | | | | ## Combined Equivalent Dynamic Load If the linear guide bears the load from arbitrary angels so that the acting force does not conform to horizontal and vertical directions, its equivalent dynamic load is calculated as shown on formula (9). ## Under the condition with the moment If the linear guide bears the load and the moment simultaneously, its equivalent dynamic load is calculated with formula (10). According to ISO 14728-1, when equivalent dynamic load tolerance rates below ≤ 0.5 C, P \leq C0m, a realiable product life value can be calculated. ## Single Block Bearing the Moment For a given structure, if the block needs to bear torque moments from Mp and My directions, the maximum moment that the block can withstand while still maintain smooth running conditions measures at about 0.3-0.1 times the static moment rating. The higher the preload, the higher the loading value and vice versa. In the case of any design questions, please contact the cpc technical department. CDC I 1/4 15 I CDC ## 3. Ordering Information ## 3.1 Length of Rail ## Length of Rail Butt-jointing is required when lengths exceed Lmax. (For more detailed information, please contact cpc for technical support.) | | | | | | | | | | L0±0.5mm | | | | | | | | | |----|---------|----------|-----------|-----------|----------|--|---|------------|---|------------|-----------|-----------|------------|-------------------|-------------------------|--|--| | Mo | odel Co | ode | | | | | | | | | | | | | Unit: mm | | | | MR | U | 15 | М | N | K | EE | 2 | V1 | Р | -310L | -15 | -15 | Π | J | | | | | | | | | | | | | | | | | | | Custo | mization code | | | | | | | | | | | | | | | | | Num
sam | nber of
e movi | rails on the
ng axis | | | | | | | | | | | | | | | | | nd hol | e pitch | (mm) | | | | | | | | | | | | | | | | Starting | j hole p | itch(mı | m) | | | | | | | | | | | | | | | Rail len | igth (m | m) | | | | | | | | | | | | | | | Ac | curacy | Grade | s: P (Pre | ecision) | , H (Hig | jh), N (Normal) | | | | | | | | | | | | Prelo | eload classes: V0: clearance VS: standard V1: light preload | | | | | | | | | | | | | | | | | E | Block qu | uantity: | Quanti | ity of th | e runn | er block | < | | | | | | | | | | | ZZ: en
SU: en
ZU: en
EE: en
EZ: en
EU: er
UZ: en
SUE: e | SS: with end seal ZZ: end seal + lubrication storage SU: end seal + bottom seal ZU: end seal + bottom seal ZU: end seal + bottom seal + lubrication storage EE: end seal + reinforcement plate EZ: end seal + reinforcement plate + lubrication storage EU: end seal + reinforcement plate + stainless bottom seal UZ: end seal + reinforcement plate + stainless bottom seal + lubrication storage SUE: end seal + bottom seal + reinforcement plate ZUE: end seal + bottom seal + reinforcement plate | | | | | | | | | | | | | | | | | Rail m | naterial | : No M | lark : sta | ndard r | all K : ca | arbon s | teel (No | w avail | able: siz | ze 9, 12, and 15.) | | | | | | | | | Block t | ype: L: | long N: | standa | ard | | | | | | | | | | | | | Rai | l type: I | M: stan | dard W | : wide | | | | | | | | | | | | | | | Rail dim | nension | : The wi | idth of | rail ex. : | 2,3,5,7 | ,9,12,15 | j | | | | | | | | | | Spe | ecial Ra | ail U: up | ward s | crewing | g rail | No I | Mark: st | andard | l rail | | | | | | | | | | Produc | t Type: | MR: Mi | niature | Linear | Guide | | | | | | | | | | | | | Standard type | | | | | Uni | it: mm | |---------------|-----|------|------|------|------|--------| | size | ЗМ | 5M | 7M | 9M | 12M | 15M | | | 30 | 40 | 40 | 55 | 70 | 70 | | | 40 | 55 | 55 | 75 | 95 | 110 | | | 50 | 70 | 70 | 95 | 120 | 150 | | | | 85 | 85 | 115 | 145 | 190 | | | | 100 | 100 | 135 | 170 | 230 | | Standard | | | 130 | 155 | 195 | 270 | | length of one | | | | 175 | 220 | 310 | | rail | | | | 195 | 245 | 350 | | | | | | 275 | 270 | 390 | | | | | | 375 | 320 | 430 | | | | | | | 370 | 470 | | | | | | | 470 | 550 | | | | | | | 570 | 670 | | | | | | | | 870 | | Pitch | 10 | 15 | 15 | 20 | 25 | 40 | | L2, L3min. | 3 | 3 | 3 | 4 | 4 | 4 | | L2, L3max. | 5 | 10 | 10 | 20 | 20 | 35 | | L0 max. | 300 | 1000 | 1000 | 1000 | 1000 | 1000 | | Wide type | | | | | | Un | it: mm | |---------------|-----|------|------|------|------|------|--------| | size | 2W | 3W | 5W | 7W | 9W | 12W | 15W | | | 30 | 40 | 50 | 50 | 50 | 70 | 110 | | | 40 | 55 | 70 | 80 | 80 | 110 | 150 | | | 50 | 70 | 90 | 110 | 110 | 150 | 190 | | | | | 110 | 140 | 140 | 190 | 230 | | | | | 130 | 170 | 170 | 230 | 270 | | Standard | | | 150 | 200 | 200 | 270 | 310 | | length of one | | | 170 | 260 | 260 | 310 | 430 | | rail | | | | 290 | 290 | 390 | 550 | | | | | | | 320 | 470 | 670 | | | | | | | | 550 | 790 | | | | | | | | | | | Pitch | 10 | 15 | 20 | 30 | 30 | 40 | 40 | | L2, L3min. | 3 | 3 | 4 | 3 | 4 | 4 | 4 | | L2, L3max. | 5 | 10 | 15 | 25 | 25 | 35 |
35 | | L0 max. | 300 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | ## **Customization Requirement** The meaning of suffix characters: J: slide rail connection G: customer designated lubricant When the required length of rail exceeds the standard rail length, a butt-joint can be specified. The rail butt-joint For special process requirements, please contact technical support. ⊕ 2B 2B ⊕ I: with Inspection report indication is marked as illustrated below. ⊕ 2A 2A ⊕ B: special processing for block I : with Inspection report Please contact technical support J: slide rail connection R: special process for rail B: special processing for block C4: Cap M4 S: special straightness requirements for rail MS: Metal Stopper on stainless steel Rail ## R: special process for rail For special process requirements, please contact technical support. C3: Cap M3 G: customer designated lubricant According to application environment. GN: no lubricant GC: low dust generation Suitable for clean room environments. Applies to MR9M, MR12M, MR15M, MR7W & MR9W rails. ### C4 CapM4: Applies to MR12W, MR15W rails. ## MS: Metal Stopper on Stainless Steel Rail s: special straightness requirements for rail To prevent the block from separating from the rail during transportation or installation; this may cause item damage or scattering. The straightness of the linear guide rail is specially calibrated by precision fine grinding. - 2. Perfect for rails installed on the vertical axis (Z-axis) to prevent gravity induced block separation from the rail. - 3. The stoppers and screws are made of stainless steel material with an anti-corrosion function. - 4. Strongly recommended NOT to use as a mechanical travel limiter or breaking system. | Rail Size | Ws max | Ts | Hs max | |-----------|--------|----|--------| | MR-7M | 10 | 5 | 8 | | MR-9M | 13 | 6 | 9 | | MR-12M | 17 | 7 | 12 | | MR-15M | 19 | 7 | 14 | | MR-7W | 18 | 6 | 9 | | MR-9W | 23 | 6 | 11 | | MR-12W | 29 | 7 | 13 | | MR-15W | 47 | 7 | 14 | **CDC** 16 17 | cpc ## 4. Insstallation Illustration ## Height and chamfer of reference edge To avoid interference, the corner of the reference edge should have a chamfer. If not, please refer to the following table for the height of the reference edge corner and the height of the reference edge. ## Height and chamfer of the reference surface | Dimension | h2 r2max | | | SS/ZZ | | SU/ZU | | EE/EZ | | EU/UZ | | SUE/ZUE | | |-----------|----------|-------|-----------|-------|-----|-------|-----|-------|-----|-------|-----|---------|-----| | Dimension | 112 F2n | Γ2max | nax [1max | h1 | Е | | 3M | 1.5 | 0.3 | 0.1 | 0.8 | 1 | 0.6 | 0.9 | - | - | - | - | - | - | | 5M | 1.9 | 0.3 | 0.2 | 1.2 | 1.5 | 0.9 | 1.2 | 0.8 | 1.1 | - | - | 0.7 | 1.0 | | 7M | 2.8 | 0.3 | 0.2 | 1.2 | 1.5 | 0.8 | 1.1 | - | - | - | - | - | - | | 9M | 3 | 0.3 | 0.2 | 1.8 | 2.2 | 1.3 | 1.7 | 1.3 | 1.7 | 1 | 1.4 | 1.1 | 1.5 | | 12M | 4 | 0.5 | 0.3 | 2.6 | 3 | 2.1 | 2.5 | 1.9 | 2.3 | 1.6 | 2 | 1.7 | 2.1 | | 15M | 4.5 | 0.5 | 0.3 | 3.6 | 4 | 2.7 | 3.1 | 2.8 | 3.2 | 2.5 | 2.9 | 2.4 | 2.9 | | Dimension | h2 | | | SS | /ZZ | SU | /ZU | EE | /EZ | EU/ | ′UZ | SUE. | /ZUE | |-------------|-----|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|------|------| | Difficusion | 112 | Γ2max | [1max | h1 | Е | h1 | Ε | h1 | Е | h1 | Е | h1 | Е | | 2WL | 1.5 | 0.3 | 0.1 | 0.8 | 1 | 0.6 | 0.9 | 0.5 | 0.7 | - | - | 0.4 | 0.6 | | 3W | 1.7 | 0.3 | 0.1 | 0.7 | 1 | 0.6 | 0.9 | - | - | - | - | - | - | | 5W | 2 | 0.3 | 0.2 | 1.2 | 1.5 | 1 | 1.3 | - | - | - | - | - | - | | 7W | 2.8 | 0.3 | 0.2 | 1.7 | 2 | 1.3 | 1.6 | 1.2 | 1.5 | - | - | 1.1 | 1.4 | | 9W | 3 | 0.3 | 0.2 | 3 | 3.4 | 2.5 | 2.9 | 2.4 | 2.8 | 2.1 | 2.5 | 2.2 | 2.6 | | 12W | 4 | 0.5 | 0.3 | 3.5 | 3.9 | 2.9 | 3.3 | 2.9 | 3.3 | 2.4 | 2.8 | 2.4 | 2.8 | | 15W | 4.5 | 0.5 | 0.3 | 3.6 | 4 | 3 | 3.4 | 2.8 | 3.2 | 2.4 | 2.8 | 2.4 | 2.8 | ## Screw tightening torque (Nm) | Screw grade 12.9
Alloy Steel Screw | Steel | Cast Iron | Non Iron
Metal | |---------------------------------------|-------|-----------|-------------------| | M2 | 0.6 | 0.4 | 0.3 | | M2.5/M2.6 | 1.2 | 0.8 | 0.6 | | M3 | 1.8 | 1.3 | 1 | | M4 | 4 | 2.5 | 2 | | ISO 3506-1 | Cast | |-----------------------|------| | A2-70 Stainless Screw | Iron | | M1.6 | 0.15 | | M2 | 0.3 | | M2.5/M2.6 | 0.6 | | M3 | 1.1 | | M4 | 2.5 | ## The mounting surface The mounting surface should be ground or fine milled to reach a surface roughness of Ra1.6 μ m. # Geometric and positional accuracy of the mounting surface Inaccurate mounting surfaces will affect the operational accuracy of the linear guide when the mounting surface height differential is greater than the values calculated by formulas (15), (16), and (17). The rating lifetime will also be shortened. ## Reference edge Rail: Both sides of the track rail can serve as the reference edge without any special marking. Block: Reference edge is opposite to the groove marking side. | e1 (mm) =b (mm) · f1 · 10 ⁻⁴ | (15 | |---|------------------| | e2 (mm) =d (mm) · f2 · 10 ⁻⁵ | — (16 | | e3 (mm) = f3 · 10 ⁻³ | (17 | | Dimension | | V0/V5 | 3 | | V1 | | |-----------|----|-------|----|----|----|----| | DIFFICION | f1 | f2 | f3 | f1 | f2 | f3 | | 3MN | 4 | 9 | 2 | 3 | 9 | 1 | | 5MN | 4 | 8 | 2 | 2 | 8 | 2 | | 7MN | 5 | 11 | 4 | 3 | 10 | 3 | | 9MN | 5 | 11 | 6 | 4 | 10 | 4 | | 12MN | 6 | 13 | 8 | 4 | 12 | 6 | | 15MN | 7 | 11 | 12 | 5 | 10 | 8 | | 3ML | 4 | 5 | 2 | 3 | 5 | 1 | | 5ML | 3 | 5 | 2 | 2 | 5 | 1 | | 7ML | 4 | 6 | 4 | 3 | 6 | 3 | | 9ML | 5 | 7 | 5 | 3 | 7 | 4 | | 12ML | 5 | 8 | 8 | 3 | 7 | 5 | | 15ML | 7 | 8 | 11 | 4 | 8 | 7 | | Dimension | | V0/VS | 5 | | V١ | | |-----------------|----|-------|----|----|----|----| | DIFFICI ISIOI I | f1 | f2 | f3 | f1 | f2 | f3 | | 2WL | 4 | 5 | 2 | 3 | 5 | 1 | | 3WN | 2 | 5 | 2 | 4 | 3 | 1 | | 5WN | 2 | 5 | 2 | 1 | 3 | 1 | | 7WN | 2 | 6 | 4 | 2 | 4 | 3 | | 9WN | 2 | 7 | 6 | 2 | 5 | 4 | | 12WN | 3 | 8 | 8 | 2 | 5 | 5 | | 15WN | 2 | 9 | 11 | 1 | 6 | 7 | | 3WL | 2 | 3 | 1 | 1 | 2 | 1 | | 5WL | 2 | 3 | 2 | 1 | 2 | 1 | | 7WL | 2 | 4 | 4 | 1 | 3 | 3 | | 9WL | 2 | 5 | 5 | 2 | 3 | 3 | | 12WL | 2 | 5 | 7 | 2 | 3 | 5 | | 15WL | 2 | 5 | 10 | 1 | 4 | 7 | 5.1 MR-M SU Series (End seal, Bottom Seal) MR-M ZU Series (End seal, Bottom Seal, Lubrication Storage) | Model Code | Fabri
Dime | cate
nsions | | Rail | Dimensio | n(mm) | | Ble | ock Dime | ension(m | m) | | Block I | Dimensic | n(mm) | | Load Car | pacities(N) | Static | Momen | t(Nm) | We | ight | Model Code | |-----------------|---------------|----------------|----|------|----------|-------------|----|------|----------|----------|-----|----------------|----------|----------|-------|-----|--------------|-------------|--------|-------|-------|----------|-----------|---------------| | Wiodel Code | Н | W2 | W1 | H1 | Р | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C 100B (dyn) | Co(stat) | Mro | Mpo | Myo | Block(g) | Rail(g/m) | Woder code | | MR 15ML SU/ZU | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 60 | 44 | 12.3 | 25 | 25 | M3x5.5 | 1.8 | 3.3 | 4.3 | 5350 | 9080 | 70 | 63.3 | 63.3 | 90 | 930 | MR 15ML SU/ZU | | MR 15MN SU/ZU | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 43 | 27 | 12.3 | 20 | 25 | M3x5.5 | 1.8 | 3.3 | 4.3 | 3810 | 5590 | 43.6 | 27 | 27 | 61 | 930 | MR 15MN SU/ZU | | MR 12ML SU/ZU | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 47.6 | 34 | 10.2 | 20 | 20 | M3x3.5 | 1.3 | 3.2 | 4.3 | 3240 | 5630 | 34.9 | 30.2 | 30.2 | 51 | 602 | MR 12ML SU/ZU | | MR 12MN SU/ZU | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 35.4 | 22 | 10.2 | 15 | 20 | M3x3.5 | 1.3 | 3.2 | 4.3 | 2308 | 3465 | 21.5 | 12.9 | 12.9 | 34 | 602 | MR 12MN SU/ZU | | MR 9ML SU/ZU | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 40.9 | 30.8 | 8 | 16 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 2135 | 3880 | 18.2 | 12.4 | 12.4 | 28 | 301 | MR 9ML SU/ZU | | MR 9MN SU/ZU | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 30.6 | 20.5 | 8 | 10 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 1570 | 2495 | 11.7 | 6.4 | 6.4 | 18 | 301 | MR 9MN SU/ZU | | MR 7ML SU/ZU | 8 | 5 | 7 | 4.7 | 15 | 4.2x2.4x2.3 | 17 | 31.2 | 21.8 | 6.7 | 13 | 12 | M2x2.5 | 1.1 | 1.6 | 2.8 | 1310 | 2440 | 9 | 7.7 | 7.7 | 14 | 215 | MR 7ML SU/ZU | | MR 7MN SU/ZU | 8 | 5 | 7 | 4.7 | 15 | 4.2x2.4x2.3 | 17 | 23.7 | 14.3 | 6.7 | 8 | 12 | M2x2.5 | 1.1 | 1.6 | 2.8 | 890 | 1440 | 5.2 | 3.3 | 3.3 | 8 | 215 | MR 7MN SU/ZU | | MR 5ML SU/ZU | 6 | 3.5 | 5 | 3.5 | 15 | 3.5x2.4x1 | 12 | 19.6 | 13.5 | 4.6 | 7 | - | M2.6x2.0 | 0.7 | 1.3 | 2 | 470 | 900 | 2.4 | 2.1 | 2.1 | 4 | 116 | MR 5ML SU/ZU | | MR 5MN SU/ZU | 6 | 3.5 | 5 | 3.5 | 15 | 3.5x2.4x1 | 12 | 16 | 10 | 4.6 | - | 8 | M2x1.5 | 0.7 | 1.3 | 2 | 335 | 550 | 1.7 | 1 | 1 | 3.5 | 116 | MR 5MN SU/ZU | | * MRU 3ML SU/ZU | 4 | 2.5 | 3 | 2.6 | 10 | M1.6 | 8 | 16 | 11 | 3.1 | 5.5 | - | M2x1.1 | 0.3 | 0.7 | 1.5 | 295 | 575 | 0.9 | 1.1 | 1.1 | 1.2 | 53 | MRU 3ML SU/ZU | | * MRU 3MN SU/ZU | 4 | 2.5 | 3 | 2.6 | 10 | M1.6 | 8 | 11.7 | 6.7 | 3.1 | 3.5 | - | M1.6x1.1 | 0.3 | 0.7 | 1.5 | 190 | 310 | 0.6 | 0.4 | 0.4 | 0.9 | 53 | MRU 3MN SU/ZU | * Anticipated Load capacities are calculated according to ISO 14728. To compare the rating life definition and the load capacities: C508 = 1.26 x C1008 **cpc** 20 21 | **cpc** 5.2 MR-M SS Series (End seal) MR-M ZZ Series (End seal , Lubrication Storage) | Model Code | | ricate
ensions | | Ra | il Dimen | sion(mm) | | Ble | ock Dime | ension(m | m) | | Block | Dimensio | n(mm) | | Load Cap | pacities(N) | Static | Momen | t(Nm) | We | ight | Model Code | |---------------|----|-------------------|----|-----|----------|-------------|----|------|----------|----------|-----|----------------|----------|----------|-------|-----|-------------|-------------|--------|-------|-------|----------|-----------|---------------| | Wiodel Code | Н | W2 | W1 | H1 | Р | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C100B (dyn) | Co(stat) | Mro | Мро | Myo | Block(g) | Rail(g/m) | Woder code | | MR 15ML SS/ZZ | 16 | 8.5 | 15 |
9.5 | 40 | 6x3.5x4.5 | 32 | 60.1 | 44 | 12 | 25 | 25 | M3x5.5 | 1.9 | 3.3 | 4.3 | 5350 | 9080 | 70 | 63.3 | 63.3 | 90 | 930 | MR 15ML SS/ZZ | | MR 15MN SS/ZZ | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 43.1 | 27 | 12 | 20 | 25 | M3x5.5 | 1.9 | 3.3 | 4.3 | 3810 | 5590 | 43.6 | 27 | 27 | 61 | 930 | MR 15MN SS/ZZ | | MR 12ML SS/ZZ | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 47.6 | 34.1 | 10 | 20 | 20 | M3x3.5 | 1.4 | 3.2 | 4.3 | 3240 | 5630 | 34.9 | 30.2 | 30.2 | 51 | 602 | MR 12ML SS/ZZ | | MR 12MN SS/ZZ | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 35.4 | 22 | 10 | 15 | 20 | M3x3.5 | 1.4 | 3.2 | 4.3 | 2308 | 3465 | 21.5 | 12.9 | 12.9 | 34 | 602 | MR 12MN SS/ZZ | | MR 9ML SS/ZZ | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 41 | 30.8 | 7.8 | 16 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 2135 | 3880 | 18.2 | 12.4 | 12.4 | 28 | 301 | MR 9ML SS/ZZ | | MR 9MN SS/ZZ | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 30.8 | 20.5 | 7.8 | 10 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 1570 | 2495 | 11.7 | 6.4 | 6.4 | 18 | 301 | MR 9MN SS/ZZ | | MR 7ML SS/ZZ | 8 | 5 | 7 | 4.7 | 15 | 4.2x2.4x2.3 | 17 | 31.5 | 21.8 | 6.5 | 13 | 12 | M2x2.5 | 1.2 | 1.6 | 2.8 | 1310 | 2440 | 9 | 7.7 | 7.7 | 14 | 215 | MR 7ML SS/ZZ | | MR 7MN SS/ZZ | 8 | 5 | 7 | 4.7 | 15 | 4.2x2.4x2.3 | 17 | 24 | 14.3 | 6.5 | 8 | 12 | M2x2.5 | 1.2 | 1.6 | 2.8 | 890 | 1440 | 5.2 | 3.3 | 3.3 | 8 | 215 | MR 7MN SS/ZZ | | MR 5ML SS/ZZ | 6 | 3.5 | 5 | 3.5 | 15 | 3.5x2.4x1 | 12 | 19.6 | 13.5 | 4.5 | 7 | - | M2.6x2.0 | 0.7 | 1.3 | 2 | 470 | 900 | 2.4 | 2.1 | 2.1 | 4 | 116 | MR 5ML SS/ZZ | | MR 5MN SS/ZZ | 6 | 3.5 | 5 | 3.5 | 15 | 3.5x2.4x1 | 12 | 16 | 10 | 4.5 | - | 8 | M2x1.5 | 0.7 | 1.3 | 2 | 335 | 550 | 1.7 | 1 | 1 | 3.5 | 116 | MR 5MN SS/ZZ | | MRU 3ML SS | 4 | 2.5 | 3 | 2.6 | 10 | M1.6 | 8 | 16 | 11 | 3 | 5.5 | - | M2x1.1 | 0.3 | 0.7 | 1.5 | 295 | 575 | 0.9 | 1.1 | 1.1 | 1.2 | 53 | MRU 3ML SS | | MRU 3MN SS | 4 | 2.5 | 3 | 2.6 | 10 | M1.6 | 8 | 11.7 | 6.8 | 3 | 3.5 | - | M1.6x1.1 | 0.3 | 0.7 | 1.5 | 190 | 310 | 0.6 | 0.4 | 0.4 | 0.9 | 53 | MRU 3MN SS | Load capacities are calculated according to ISO 14728. To compare the rating life definition and the load capacities: C508 = 1.26 x C1008 **cpc** | 22 5.3 MR-M SUE Series (End seal, Bottom Seal, Reinforcement Plate) MR-M ZUE Series (End seal, Bottom Seal, Reinforcement Plate, Lubrication Storage) | Model Code | | icate
nsions | | Rail Di | imensior | ı(mm) | | Blo | ock Dime | ension(m | m) | | Block | Dimensi | on(mm) | | Load Cap | acities(N) | Statio | : Momer | nt(Nm) | Wei | ght | Model Code | |-----------------|----|-----------------|----|---------|----------|-----------|----|------|----------|----------|----|----------------|----------|---------|--------|-----|--------------|------------|--------|---------|--------|----------|-----------|-----------------| | Woder Code | Н | W2 | W1 | H1 | Р | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C 100B (dyn) | Co(stat) | Mro | Mpo | Myo | Block(g) | Rail(g/m) | Model odde | | MR 15ML SUE/ZUE | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 61.6 | 44 | 13.1 | 25 | 25 | M3x5.5 | 1.8 | 3.3 | 4.3 | 5350 | 9080 | 70 | 63.3 | 63.3 | 90 | 930 | MR 15ML SUE/ZUE | | MR 15MN SUE/ZUE | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 44.6 | 27 | 13.1 | 20 | 25 | M3x5.5 | 1.8 | 3.3 | 4.3 | 3810 | 5590 | 43.6 | 27 | 27 | 61 | 930 | MR 15MN SUE/ZUE | | MR 12ML SUE/ZUE | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 49 | 34 | 10.9 | 20 | 20 | M3x3.5 | 1.3 | 3.2 | 4.3 | 3240 | 5630 | 34.9 | 30.2 | 30.2 | 51 | 602 | MR 12ML SUE/ZUE | | MR 12MN SUE/ZUE | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 36.8 | 22 | 10.9 | 15 | 20 | M3x3.5 | 1.3 | 3.2 | 4.3 | 2308 | 3465 | 21.5 | 12.9 | 12.9 | 34 | 602 | MR 12MN SUE/ZUE | | MR 9ML SUE/ZUE | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 41.9 | 30.8 | 8.5 | 16 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 2135 | 3880 | 18.2 | 12.4 | 12.4 | 28 | 301 | MR 9ML SUE/ZUE | | MR 9MN SUE/ZUE | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 31.6 | 20.5 | 8.5 | 10 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 1570 | 2495 | 11.7 | 6.4 | 6.4 | 18 | 301 | MR 9MN SUE/ZUE | | MR 5ML SUE/ZUE | 6 | 3.5 | 5 | 3.5 | 15 | 3.5x2.4x1 | 12 | 20.2 | 13.5 | 5.0 | 7 | - | M2.6x2.0 | 0.7 | 1.3 | 2 | 470 | 900 | 2.4 | 2.1 | 2.1 | 4 | 116 | MR 5ML SUE/ZUE | | MR 5MN SUE/ZUE | 6 | 3.5 | 5 | 3.5 | 15 | 3.5x2.4x1 | 12 | 16.6 | 10 | 5.0 | - | 8 | M2x1.5 | 0.7 | 1.3 | 2 | 335 | 550 | 1.7 | 1 | 1 | 3.5 | 116 | MR 5MN SUE/ZUE | Load capacities are calculated according to ISO 14728. To compare the rating life definition and the load capacities: Csos = 1.26 x C1008 CPC 24 5.4 MR-M EE Series (End seal, Reinforcement Plate) MR-M EZ Series (End seal, Reinforcement Plate, Lubrication Storage) | Model Code | Fabri
Dime | icate
nsions | | Rail D | Dimension | n(mm) | | Ble | ock Dime | ension(m | m) | | Block I | Dimensic | n(mm) | | Load Cap | pacities(N) | Statio | : Momer | t(Nm) | We | eight | Model Code | |----------------|---------------|-----------------|----|--------|-----------|-----------|----|------|----------|----------|----|----------------|----------|----------|-------|-----|--------------|-------------|--------|---------|-------|----------|-----------|---------------| | | Н | W2 | W1 | H1 | Р | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C 100B (dyn) | Co(stat) | Mro | Мро | Myo | Block(g) | Rail(g/m) | | | MR 15ML EE/EZ | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 61.6 | 44 | 12.8 | 25 | 25 | M3x5.5 | 1.8 | 3.3 | 4.3 | 5350 | 9080 | 70 | 63.3 | 63.3 | 90 | 930 | MR 15ML EE/EZ | | MR 15MN EE/EZ | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 44.6 | 27 | 12.8 | 20 | 25 | M3x5.5 | 1.8 | 3.3 | 4.3 | 3810 | 5590 | 43.6 | 27 | 27 | 61 | 930 | MR 15MN EE/EZ | | MR 12ML EE/EZ | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 49 | 34 | 10.7 | 20 | 20 | M3x3.5 | 1.3 | 3.2 | 4.3 | 3240 | 5630 | 34.9 | 30.2 | 30.2 | 51 | 602 | MR 12ML EE/EZ | | MR 12MN EE/EZ | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 36.8 | 22 | 10.7 | 15 | 20 | M3x3.5 | 1.3 | 3.2 | 4.3 | 2308 | 3465 | 21.5 | 12.9 | 12.9 | 34 | 602 | MR 12MN EE/EZ | | MR 9ML EE/EZ | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 41.9 | 30.8 | 8.3 | 16 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 2135 | 3880 | 18.2 | 12.4 | 12.4 | 28 | 301 | MR 9ML EE/EZ | | MR 9MN EE/EZ | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 31.6 | 20.5 | 8.3 | 10 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 1570 | 2495 | 11.7 | 6.4 | 6.4 | 18 | 301 | MR 9MN EE/EZ | | * MR 5ML EE/EZ | 6 | 3.5 | 5 | 3.5 | 15 | 3.5x2.4x1 | 12 | 20.2 | 13.5 | 4.9 | 7 | - | M2.6x2.0 | 0.7 | 1.3 | 2 | 470 | 900 | 2.4 | 2.1 | 2.1 | 4 | 116 | MR 5ML EE/EZ | | MR 5MN EE/EZ | 6 | 3.5 | 5 | 3.5 | 15 | 3.5x2.4x1 | 12 | 16.6 | 10 | 4.9 | - | 8 | M2x1.5 | 0.7 | 1.3 | 2 | 335 | 550 | 1.7 | 1 | 1 | 3.5 | 116 | MR 5MN EE/EZ | ^{*} Anticipated 5.5 MR-M EU Series (End seal , Reinforcement Plate , Stainless Bottom Seal) MR-M UZ Series (End seal , Reinforcement Plate , Stainless Bottom Seal , Lubrication Storage) | Model Code | | icate
nsions | | Rail D | imension | n(mm) | | Ble | ock Dime | ension(m | m) | | Block | Dimensi | on(mm) | | Load Ca | pacities(N) | Statio | Momer | nt(Nm) | We | ight | Model Code | |---------------|----|-----------------|----|--------|----------|-----------|----|------|----------|----------|----|----------------|--------|---------|--------|-----|--------------|-------------|--------|-------|--------|----------|-----------|---------------| | Wiodel Code | Н | W2 | W1 | H1 | Р | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C 100B (dyn) | Co(stat) | Mro | Мро | Myo | Block(g) | Rail(g/m) | Wiodel Code | | MR 15ML EU/UZ | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 61.6 | 44 | 13.1 | 25 | 25 | M3x5.5 | 1.8 | 3.3 | 4.3 | 5350 | 9080 | 70 | 63.3 | 63.3 | 90 | 930 | MR 15ML EU/UZ | | MR 15MN EU/UZ | 16 | 8.5 | 15 | 9.5 | 40 | 6x3.5x4.5 | 32 | 44.6 | 27 | 13.1 | 20 | 25 | M3x5.5 | 1.8 | 3.3 | 4.3 | 3810 | 5590 | 43.6 | 27 | 27 | 61 | 930 | MR 15MN EU/UZ | | MR 12ML EU/UZ | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 49 | 34 | 11 | 20 | 20 | M3x3.5 | 1.3 | 3.2 | 4.3 | 3240 | 5630 | 34.9 | 30.2 | 30.2 | 51 | 602 | MR 12ML EU/UZ | | MR 12MN EU/UZ | 13 | 7.5 | 12 | 7.5 | 25 | 6x3.5x4.5 | 27 | 36.8 | 22 | 11 | 15 | 20 | M3x3.5 | 1.3 | 3.2 | 4.3 | 2308 | 3465 | 21.5 | 12.9 | 12.9 | 34 | 602 | MR 12MN EU/UZ | | MR 9ML EU/UZ | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 41.9 | 30.8 | 8.6 | 16 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 2135 | 3880 | 18.2 | 12.4 | 12.4 | 28 | 301 | MR 9ML EU/UZ | | MR 9MN EU/UZ | 10 | 5.5 | 9 | 5.5 | 20 | 6x3.5x3.5 | 20 | 31.6 | 20.5 | 8.6 | 10 | 15 | M3x3.0 | 1.3 | 2.2 | 3.3 | 1570 | 2495 | 11.7 | 6.4 | 6.4 | 18 | 301 | MR 9MN EU/UZ | Load capacities are calculated according to ISO 14728. To compare the rating life definition and the load capacities: C508 = 1.26 x C1008 **CDC** 28 5.6 MR-W SU Series (End seal , Bottom Seal) MR-W ZU Series (End seal , Bottom Seal , Lubrication Storage) | Model Code | | ricate
ensions | | Rail | Dimensio | on(mm) | | | Block | . Dimensi | ion(mm) | | | Block | Dimensio | on(mm) | | Load Cap | acities(N) | Static | Momen | t(Nm) | We | eight | Model Code | |----------------|-----|-------------------|----|------|----------|----------------|-------------|----|-------|-----------|---------|-----|----------------|-------------|----------|--------|-----|------------|------------|--------|-------|-------|----------|-----------|---------------| | Wiodel Code | Н | W2 | W1 | H1 | Р | P ₃ | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C100B(dyn) | Co(stat) | Мго | Мро | Myo | Block(g) | Rail(g/m) | Wiodel Code | | MR 15WL SU/ZU | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 74.4 | 57.6 | 12.3 | 35 | 45 | M4x4.5 | 1.8 | 3.3 | 4.5 | 6725 | 12580 | 257.6 | 93.1 | 93.1 | 200 | 2818 | MR 15WL SU/ZU | | MR 15WN SU/ZU | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 55.3 | 38.5 | 12.3 | 20 | 45 | M 4 x 4 . 5 | 1.8 | 3.3 | 4.5 | 5065 | 8385 | 171.1 | 45.7 | 45.7 | 137 | 2818 | MR 15WN SU/ZU | | MR 12WL SU/ZU | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 |
59.4 | 46 | 10.4 | 28 | 28 | M3x3.5 | 1.3 | 3.1 | 4.5 | 4070 | 7800 | 95.6 | 56.4 | 56.4 | 93 | 1472 | MR 12WL SU/ZU | | MR 12WN SU/ZU | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 44.4 | 31 | 10.4 | 15 | 28 | M3x3.5 | 1.3 | 3.1 | 4.5 | 3065 | 5200 | 63.7 | 26.3 | 26.3 | 65 | 1472 | MR 12WN SU/ZU | | MR 9WL SU/ZU | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 50.7 | 39.5 | 8.8 | 24 | 23 | M3x3 | 1.3 | 2.6 | 4 | 2550 | 4990 | 45.9 | 26.7 | 26.7 | 51 | 940 | MR 9WL SU/ZU | | MR 9WN SU/ZU | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 39.1 | 27.9 | 8.8 | 12 | 21 | M3x3 | 1.3 | 2.6 | 4 | 2030 | 3605 | 33.2 | 13.7 | 13.7 | 37 | 940 | MR 9WN SU/ZU | | MR 7WL SU/ZU | 9 | 5.5 | 14 | 5.2 | 30 | - | 6x3.5x3.5 | 25 | 40.5 | 30.1 | 7.2 | 19 | 19 | M3x3 | 1.1 | 1.9 | 3.2 | 1570 | 3140 | 22.65 | 14.9 | 14.9 | 27 | 516 | MR 7WL SU/ZU | | MR 7WN SU/ZU | 9 | 5.5 | 14 | 5.2 | 30 | - | 6x3.5x3.5 | 25 | 31.6 | 21.2 | 7.2 | 10 | 19 | M3x3 | 1.1 | 1.9 | 3.2 | 1180 | 2095 | 15 | 7.3 | 7.3 | 19 | 516 | MR 7WN SU/ZU | | MR 5WL SU/ZU | 6.5 | 3.5 | 10 | 4 | 20 | - | 5.5x3x1.6 | 17 | 27.2 | 21.2 | 5.1 | 11 | 13 | M2.5x1.5 | 0.9 | 1.2 | 2.3 | 615 | 1315 | 6.8 | 4.1 | 4.1 | 8 | 280 | MR 5WL SU/ZU | | MR 5WLC SU/ZU | 6.5 | 3.5 | 10 | 4 | 20 | - | 5.5x3x1.6 | 17 | 27.2 | 21.2 | 5.1 | 11 | 13 | M3/M2.5x1.5 | 0.9 | 1.2 | 2.3 | 615 | 1315 | 6.8 | 4.1 | 4.1 | 8 | 280 | MR 5WLC SU/ZU | | MR 5WN SU/ZU | 6.5 | 3.5 | 10 | 4 | 20 | - | 5.5x3x1.6 | 17 | 21.1 | 15.1 | 5.1 | 6.5 | 13 | M2.5x1.5 | 0.9 | 1.2 | 2.3 | 475 | 900 | 4.6 | 2.2 | 2.2 | 6 | 280 | MR 5WN SU/ZU | | MR 5WNC SU/ZU | 6.5 | 3.5 | 10 | 4 | 20 | - | 5.5x3x1.6 | 17 | 21.1 | 15.1 | 5.1 | 6.5 | 13 | M3/M2.5x1.5 | 0.9 | 1.2 | 2.3 | 475 | 900 | 4.6 | 2.2 | 2.2 | 6 | 280 | MR 5WNC SU/ZU | | * MR 3WL SU/ZU | 4.5 | 3 | 6 | 2.7 | 15 | - | 4x2.4x1.5 | 12 | 20.1 | 15.1 | 3.6 | 8 | - | M2x1.4 | 0.3 | 0.8 | 1.8 | 370 | 800 | 2.5 | 1.9 | 1.9 | 3.4 | 105 | MR 3WL SU/ZU | | * MR 3WN SU/ZU | 4.5 | 3 | 6 | 2.7 | 15 | - | 4x2.4x1.5 | 12 | 15 | 10 | 3.6 | 4.5 | - | M2x1.4 | 0.3 | 0.8 | 1.8 | 280 | 530 | 1.6 | 0.9 | 0.9 | 3.4 | 105 | MR 3WN SU/ZU | | * MR 2WL SU/ZU | 4 | 3 | 4 | 2.6 | 10 | - | 2.8x1.8x1.0 | 10 | 17 | 11.9 | 3.1 | 6.5 | - | M2x1.3 | - | - | 1.3 | 310 | 625 | 1.6 | 1.2 | 1.2 | 3.0 | 69 | MR 2WL SU/ZU | ^{*} Anticipated 5.7 MR-W SS Series (End seal) MR-W ZZ Series (End seal, Lubrication Storage) | Model Code | | icate
insions | | Rai | l Dimens | ion(mm |) | | Block | Dimensi | on(mm) | | | Block [| Dimensio | n(mm) | | Load Cap | acities(N) | Static | Momen | t(Nm) | We | ight | Model Code | |---------------|-----|------------------|----|-----|----------|--------|-------------|----|-------|---------|--------|-----|----------------|-------------|----------|-------|-----|------------|------------|--------|-------|-------|----------|-----------|---------------| | ouc. couc | Н | W2 | W1 | H1 | Р | P3 | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C100B(dyn) | Co(stat) | Mro | Мро | Myo | Block(g) | Rail(g/m) | odor oodo | | MR 15WL SS/ZZ | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 74.5 | 57.6 | 12 | 35 | 45 | M4x4.5 | 1.9 | 3.3 | 4.5 | 6725 | 12580 | 257.6 | 93.1 | 93.1 | 200 | 2818 | MR 15WL SS/ZZ | | MR 15WN SS/ZZ | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 55.8 | 38.5 | 12 | 20 | 45 | M4x4.5 | 1.9 | 3.3 | 4.5 | 5065 | 8385 | 171.1 | 45.7 | 45.7 | 137 | 2818 | MR 15WN SS/ZZ | | MR 12WL SS/ZZ | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 59.6 | 46 | 10.1 | 28 | 28 | M3x3.5 | 1.4 | 3.1 | 4.5 | 4070 | 7800 | 95.6 | 56.4 | 56.4 | 93 | 1472 | MR 12WL SS/ZZ | | MR 12WN SS/ZZ | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 44.5 | 31.1 | 10.1 | 15 | 28 | M3x3.5 | 1.4 | 3.1 | 4.5 | 3065 | 5200 | 63.7 | 26.3 | 26.3 | 65 | 1472 | MR 12WN SS/ZZ | | MR 9WL SS/ZZ | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 50.7 | 39.4 | 8.6 | 24 | 23 | M3x3 | 1.3 | 2.6 | 4 | 2550 | 4990 | 45.9 | 26.7 | 26.7 | 51 | 940 | MR 9WL SS/ZZ | | MR 9WN SS/ZZ | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 39.1 | 27.9 | 8.6 | 12 | 21 | M3x3 | 1.3 | 2.6 | 4 | 2030 | 3605 | 33.2 | 13.7 | 13.7 | 37 | 940 | MR 9WN SS/ZZ | | MR 7WL SS/ZZ | 9 | 5.5 | 14 | 5.2 | 30 | - | 6x3.5x3.5 | 25 | 40.5 | 30.1 | 7 | 19 | 19 | M3x3 | 1.1 | 1.9 | 3.2 | 1570 | 3140 | 22.65 | 14.9 | 14.9 | 27 | 516 | MR 7WL SS/ZZ | | MR 7WN SS/ZZ | 9 | 5.5 | 14 | 5.2 | 30 | - | 6x3.5x3.5 | 25 | 31.8 | 21.2 | 7 | 10 | 19 | M3x3 | 1.1 | 1.9 | 3.2 | 1180 | 2095 | 15 | 7.3 | 7.3 | 19 | 516 | MR 7WN SS/ZZ | | MR 5WL SS | 6.5 | 3.5 | 10 | 4 | 20 | - | 5.5x3x1.6 | 17 | 27.2 | 21.2 | 5 | 11 | 13 | M2.5x1.5 | 0.9 | 1.2 | 2.3 | 615 | 1315 | 6.8 | 4.1 | 4.1 | 8 | 280 | MR 5WL SS | | MR 5WLC SS | 6.5 | 3.5 | 10 | 4 | 20 | - | 5.5x3x1.6 | 17 | 27.2 | 21.2 | 5 | 11 | 13 | M3/M2.5x1.5 | 0.9 | 1.2 | 2.3 | 615 | 1315 | 6.8 | 4.1 | 4.1 | 8 | 280 | MR 5WLC SS | | MR 5WN SS | 6.5 | 3.5 | 10 | 4 | 20 | - | 5.5x3x1.6 | 17 | 21.1 | 15.1 | 5 | 6.5 | 13 | M2.5x1.5 | 0.9 | 1.2 | 2.3 | 475 | 900 | 4.6 | 2.2 | 2.2 | 6 | 280 | MR 5WN SS | | MR 5WNC SS | 6.5 | 3.5 | 10 | 4 | 20 | - | 5.5x3x1.6 | 17 | 21.1 | 15.1 | 5 | 6.5 | 13 | M3/M2.5x1.5 | 0.9 | 1.2 | 2.3 | 475 | 900 | 4.6 | 2.2 | 2.2 | 6 | 280 | MR 5WNC SS | | MR 3WL SS/ZZ | 4.5 | 3 | 6 | 2.7 | 15 | - | 4x2.4x1.5 | 12 | 20.1 | 15.1 | 3.5 | 8 | - | M2x1.4 | 0.3 | 0.8 | 1.8 | 370 | 800 | 2.5 | 1.9 | 1.9 | 3.4 | 105 | MR 3WL SS/ZZ | | MR 3WN SS/ZZ | 4.5 | 3 | 6 | 2.7 | 15 | - | 4x2.4x1.5 | 12 | 15 | 10 | 3.5 | 4.5 | - | M2x1.4 | 0.3 | 0.8 | 1.8 | 280 | 530 | 1.6 | 0.9 | 0.9 | 3.4 | 105 | MR 3WN SS/ZZ | | MR 2WL SS/ZZ | 4 | 3 | 4 | 2.6 | 10 | - | 2.8x1.8x1.0 | 10 | 17 | 11.9 | 3 | 6.5 | - | M2x1.3 | - | - | 1.3 | 310 | 625 | 1.6 | 1.2 | 1.2 | 3.0 | 69 | MR 2WL SS/ZZ | ^{*} Anticipated Load capacities are calculated according to ISO 14728. To compare the rating life definition and the load capacities: CsoB = 1,26 x C1008 5.8 MR-W SUE Series (End seal, Bottom Seal, Reinforcement Plate) MR-W ZUE Series (End seal, Bottom Seal, Reinforcement Plate, Lubrication Storage) | Model Code | | icate
nsions | | Rail | Dimensi | on(mm) | | | Blo | ock Dime | ension(m | m) | | Block | c Dimens | ion(mm) | | Load Cap | acities(N) | Statio | c Momer | nt(Nm) | We | eight | Model Code | |-----------------|----|-----------------|----|------|---------|--------|-------------|----|------|----------|----------|-----|----------------|-------------|----------|---------|-----|------------|------------|--------|---------|--------|----------|-----------|-----------------| | | Н | W2 | W1 | H1 | Р | P3 | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C100B(dyn) | Co(stat) | Mro | Мро | Myo | Block(g) | Rail(g/m) | | | MR 15WL SUE/ZUE | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 76 | 57.6 | 13.1 | 35 | 45 | M 4 x 4 . 5 | 1.8 | 3.3 | 4.5 | 6725 | 12580 | 257.6 | 93.1 | 93.1 | 203 | 2818 | MR 15WL SUE/ZUE | | MR 15WN SUE/ZUE | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 56.9 | 38.5 | 13.1 | 20 | 45 | M4x4.5 | 1.8 | 3.3 | 4.5 | 5065 | 8385 | 171.1 | 45.7 | 45.7 | 140 | 2818 | MR 15WN SUE/ZUE | | MR 12WL SUE/ZUE | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 60.8 | 46 | 11.2 | 28 | 28 | M3x3.5 | 1.3 | 3.1 | 4.5 | 4070 | 7800 | 95.6 | 56.4 | 56.4 | 96 | 1472 | MR 12WL SUE/ZUE | | MR 12WN SUE/ZUE | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 45.8 | 31 | 11.2 | 15 | 28 | M3x3.5 | 1.3 | 3.1 | 4.5 | 3065 | 5200 | 63.7 | 26.3 | 26.3 | 68 | 1472 | MR 12WN SUE/ZUE | | MR 9WL SUE/ZUE | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 51.8 | 39.5 | 9.4 | 24 | 23 | M3x3 | 1.3 | 2.6 | 4 | 2550 | 4990 | 45.9 | 26.7 | 26.7 | 51 | 940 | MR 9WL SUE/ZUE | | MR 9WN SUE/ZUE | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 40.2 | 27.9 | 9.4 | 12 | 21 | M3x3 | 1.3 | 2.6 | 4 | 2030 | 3605 | 33.2 | 13.7 | 13.7 | 37 | 940 | MR 9WN SUE/ZUE | | MR 7WL SUE/ZUE | 9 | 5.5 | 14 | 5.2 | 30 | - | 6x3.5x3.5 | 25 | 41.5 | 30.1 | 7.6 | 19 | 19 | M3x3 | 1.1 | 1.9 | 3.2 | 1570 | 3140 | 22.65 | 14.9 | 14.9 | 27 | 516 | MR 7WL SUE/ZUE | | MR 7WN SUE/ZUE | 9 | 5.5 | 14 | 5.2 | 30 | - | 6x3.5x3.5 | 25 | 32.5 | 21.2 | 7.6 | 10 | 19 | M3x3 | 1.1 | 1.9 | 3.2 | 1180 | 2095 | 15 | 7.3 | 7.3 | 19 | 516 | MR 7WN SUE/ZUE | | MR 2WL SUE/ZUE | 4 | 3 | 4 | 3 | 10 | - | 2.8x1.8x1.0 | 10 | 17.5 | 11.9 | 3.4 | 6.5 | - | M2x1.3 | - | - | 1.3 | 310 | 625 | 1.6 | 1.2 | 1.2 | 3.0 | 69 | MR 2WL SUE/ZUE | 5.9 MR-W EE Series (End seal, Reinforcement Plate) MR-W EZ Series (End seal , Reinforcement Plate , Lubrication Storage) | Model Code | | ricate
ensions | | Ra | ail Dimen | nsion(mn | n) | | Blo | ock Dime | ension(mi | m) | | Block | Dimensio | on(mm) | | Load Cap | acities(N) | Statio | : Momer | nt(Nm) | We | ight | - Model Code | |---------------|----|-------------------|----|-----|-----------|----------|-------------|----|------|----------|-----------|-----|----------------|-------------|----------|--------|-----|--------------|------------|--------|---------|--------|----------|-----------|---------------| | Woder oode | Н | W2 | W1 | H1 | Р | P3 | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C 100B (dyn) | Co(stat) | Mro | Mpo | Myo | Block(g) | Rail(g/m) | Woder code | | MR 15WL EE/EZ | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 76 | 57.6 | 12.8 | 35 | 45 | M4x4.5 | 1.8 | 3.3 | 4.5 | 6725 | 12580 | 257.6 | 93.1 | 93.1 | 203 | 2818 | MR 15WL EE/EZ | | MR 15WN EE/EZ | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 56.9 | 38.5 | 12.8 | 20 | 45 | M 4 x 4 . 5 | 1.8 | 3.3 | 4.5 | 5065 | 8385 | 171.1 | 45.7 | 45.7 | 140 | 2818 | MR 15WN EE/EZ | | MR 12WL EE/EZ | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 60.8 | 46 | 10.9 | 28 | 28 | M3x3.5 | 1.3 | 3.1 | 4.5 | 4070 | 7800 | 95.6 | 56.4 | 56.4 | 96 | 1472 | MR 12WL EE/EZ | | MR 12WN EE/EZ | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 45.8 | 31 | 10.9 | 15 | 28 | M3x3.5 | 1.3 | 3.1 | 4.5 | 3065 | 5200 | 63.7 | 26.3 | 26.3 | 68 | 1472 | MR 12WN EE/EZ | | MR 9WL EE/EZ | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 51.8 | 39.5 | 9.2 | 24 | 23 | M3x3 | 1.3 | 2.6 | 4 | 2550 | 4990 | 45.9 | 26.7 | 26.7 | 51 | 940 |
MR 9WL EE/EZ | | MR 9WN EE/EZ | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 40.2 | 27.9 | 9.2 | 12 | 21 | M3x3 | 1.3 | 2.6 | 4 | 2030 | 3605 | 33.2 | 13.7 | 13.7 | 37 | 940 | MR 9WN EE/EZ | | MR 7WL EE/EZ | 9 | 5.5 | 14 | 5.2 | 30 | - | 6x3.5x3.5 | 25 | 41.5 | 30.1 | 7.5 | 19 | 19 | M3x3 | 1.1 | 1.9 | 3.2 | 1570 | 3140 | 22.65 | 14.9 | 14.9 | 27 | 516 | MR 7WL EE/EZ | | MR 7WN EE/EZ | 9 | 5.5 | 14 | 5.2 | 30 | - | 6x3.5x3.5 | 25 | 32.5 | 21.2 | 7.5 | 10 | 19 | M3x3 | 1.1 | 1.9 | 3.2 | 1180 | 2095 | 15 | 7.3 | 7.3 | 19 | 516 | MR 7WN EE/EZ | | MR 2WL EE/EZ | 4 | 3 | 4 | 3 | 10 | - | 2.8x1.8x1.0 | 10 | 17.5 | 11.9 | 3.3 | 6.5 | - | M2x1.3 | - | - | 1.3 | 310 | 625 | 1.6 | 1.2 | 1.2 | 3.0 | 69 | MR 2WL EE/EZ | 5.10 MR-W EU Series (End seal, Reinforcement Plate, Stainless Bottom Seal) MR-W UZ Series (End seal, Reinforcement Plate, Stainless Bottom Seal, Lubrication Storage) | Model Code | | icate
nsions | | Rai | l Dimens | ion(mm) |) | | В | lock Dim | ension(r | nm) | | Bloc | k Dimen | sion(mm) |) | Load Cap | acities(N) | Statio | Momer | ıt(Nm) | We | ight | Model Code | |---------------|----|-----------------|----|-----|----------|---------|-----------|----|------|----------|----------|-----|----------------|-------------|---------|----------|-----|------------|------------|--------|-------|--------|----------|-----------|---------------| | Wiodel Code | Н | W2 | W1 | H1 | Р | P3 | Dxdxg1 | W | L | L1 | h2 | P1 | P ₂ | Mxg2 | Ø | S | T | C100B(dyn) | Co(stat) | Mro | Mpo | Myo | Block(g) | Rail(g/m) | Woder code | | MR 15WL EU/UZ | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 76 | 57.6 | 13.1 | 35 | 45 | M 4 x 4 . 5 | 1.8 | 3.3 | 4.5 | 6725 | 12580 | 257.6 | 93.1 | 93.1 | 203 | 2818 | MR 15WL EU/UZ | | MR 15WN EU/UZ | 16 | 9 | 42 | 9.5 | 40 | 23 | 8x4.5x4.5 | 60 | 56.9 | 38.5 | 13.1 | 20 | 45 | M 4 x 4 . 5 | 1.8 | 3.3 | 4.5 | 5065 | 8385 | 171.1 | 45.7 | 45.7 | 140 | 2818 | MR 15WN EU/UZ | | MR 12WL EU/UZ | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 60.8 | 46 | 11 | 28 | 28 | M3x3.5 | 1.3 | 3.1 | 4.5 | 4070 | 7800 | 95.6 | 56.4 | 56.4 | 96 | 1472 | MR 12WL EU/UZ | | MR 12WN EU/UZ | 14 | 8 | 24 | 8.5 | 40 | - | 8x4.5x4.5 | 40 | 45.8 | 31 | 11 | 15 | 28 | M3x3.5 | 1.3 | 3.1 | 4.5 | 3065 | 5200 | 63.7 | 26.3 | 26.3 | 68 | 1472 | MR 12WN EU/UZ | | MR 9WL EU/UZ | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 51.8 | 39.5 | 9.5 | 24 | 23 | M3x3 | 1.3 | 2.6 | 4 | 2550 | 4990 | 45.9 | 26.7 | 26.7 | 51 | 940 | MR 9WL EU/UZ | | MR 9WN EU/UZ | 12 | 6 | 18 | 7.3 | 30 | - | 6x3.5x4.5 | 30 | 40.2 | 27.9 | 9.5 | 12 | 21 | M3x3 | 1.3 | 2.6 | 4 | 2030 | 3605 | 33.2 | 13.7 | 13.7 | 37 | 940 | MR 9WN EU/UZ | ## 5.11 Standard MRU-M series - Tapped from bottom ## **Dimensions and Specifications** | Model | Code | | Rail Dimensio | ns (mm |) | |-------|------|-----|---------------|--------|------------| | | | Ηī | Wı | Р | Mı | | MRU | 15M | 9.5 | 15 | 40 | M4x0.7 | | MRU | 12M | 7.5 | 12 | 25 | M4x0.7 | | MRU | 9M | 5.5 | 9 | 20 | M4x0.7 | | MRU | 7M | 4.7 | 7 | 15 | M3x0.5 | | MRU | 5M | 3.5 | 5 | 15 | M3x0.5 | | MRU | 3M | 2.6 | 3 | 10 | M1.6 x0.35 | ## 5.12 Wide MRU-W series - Tapped from bottom ## Dimensions and Specifications | Difficitions | , and spc | Cilication | 13 | | |--------------|-----------|----------------|---------|--------| | Model Code | | Rail Dimensi | ons (mm |) | | | Hı | W ₁ | Р | Mı | | MRU 15W | 9.5 | 42 | 40 | M5x0.8 | | MRU 12W | 8.5 | 24 | 40 | M5x0.8 | | MRU 9W | 7.3 | 18 | 30 | M4x0.7 | | MRU 7W | 5.2 | 14 | 30 | M4x0.7 | | MRU 5W | 4 | 10 | 20 | M3x0.5 | | MRU 3W | 2.7 | 6 | 15 | M3x0.5 | ## 6. Carbon Steel ## Characteristic - 1. Provided max length: 3m. - 2. Hardness of the ball runner rail surface : HRC 58 ~ 63 Hardness of the center : About HRC 28 - 3. Applies to industrial machines in normal conditions. - 4. Sizes are the same as with stainless steel products. - 5. Very competitive prices. - 6. Precision class available for N, H, and P Grade. - Product size, precision class, and other technical information are the same as the MR stainless series, please refer to the cpc MR Miniature Linear Guide Series Catalog for more information. | | | Standard | | | Wide | | | |-------------------------------|------|----------|------|------|------|------|--| | Suggestion length of one rail | | Size | | | Size | | | | one rail | 9M | 12M | 15M | 9W | 12W | 15W | | | Pitch(mm) | 20 | 25 | 40 | 30 | 40 | 40 | | | L2, L3 min | 4 | 4 | 4 | 4 | 4 | 4 | | | L2, L3 max | 20 | 20 | 35 | 25 | 35 | 35 | | | Maximum rail length L0 (mm) | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | | ## 6. Carbon Steel ## Standard Rail MR-9W/12W ## Standard MR-M series Rail | Model Code | | Rail D | imensior | ns(mm) | Weight(g/m) | |------------|-----|--------|----------|-----------|-------------| | | H1 | W1 | Р | Dxdxg1 | | | MR 15M | 9.5 | 15 | 40 | 6x3.5x4.5 | 930 | | MR 12M | 7.5 | 12 | 25 | 6x3.5x4.5 | 602 | | MR 9M | 5.5 | 9 | 20 | 6x3.5x3.5 | 301 | ## Wide MR-W series Rail | Model Code | | Ra | il Dime | nsions | (mm) | Weight(g/m | |------------|-----|----|---------|----------------|-----------|------------| | | H1 | W1 | Р | P ₃ | Dxdxg1 | | | MR 15W | 9.5 | 42 | 40 | 23 | 8x4.5x4.5 | 2818 | | MR 12W | 8.5 | 24 | 40 | - | 8x4.5x4.5 | 1472 | | MR 9W | 7.3 | 18 | 30 | - | 6x3.5x4.5 | 940 | ## Tapped Rail ## Standard MRU-M series - Tapped from bottom | | Model Code | | Rail Di | mension | s(mm) | Weight(g/m) | |---|------------|-----|---------|---------|--------|-------------| | ı | | H1 | W1 | Р | M1 | | | ı | MRU 15M | 9.5 | 15 | 40 | M4x0.7 | 930 | | ı | MRU 12M | 7.5 | 12 | 25 | M4x0.7 | 602 | | ı | MRU 9M | 5.5 | 9 | 20 | M4x0.7 | 301 | Wide MRU-W series - Tapped from bottom | Model Code | | Rail | Dimen | sions(m | nm) | Weight(g/m) | |------------|-----|------|-------|----------------|--------|-------------| | | H1 | W1 | Р | P ₃ | M1 | | | MRU 15W | 9.5 | 42 | 40 | 23 | M5x0.8 | 2818 | | MRU 12W | 8.5 | 24 | 40 | - | M5x0.8 | 1472 | | MRU 9W | 7.3 | 18 | 30 | - | M4x0.7 | 940 | # High load and high moment capaity The ST Miniature Stroke Slide Series is designed with two rows of balls. The ball track has a gothic profile design with a 45 degree contact angle to achieve equal load capacity in a mono block. This provides more space for the larger rolling elements while enhancing the load and moment capacity. ## High running accuracy and smoothness The steel balls of the ST miniature stroke slide series roll on the rail without recirculation, resulting in excellent running behavior, smoothness, low friction, and high accuracy without vibration. ## Dual plate design The ST Miniature Stroke Slide Series adopts a pair of end plates into the design. Both the center rail and bearing block sides have a plate installed that prevents the linear guide from over-stroking. ## **Easy mounting** The mounting of the ST Miniature Stroke Slide Series is accomplished by fitting the fixing screw downward into the count bore of the rail by intersecting the hole pattern on the block and cage within the hole pitch. The one piece cage therefore does not influence the mounting of the rail while the preload is preset by ball sorting. ## **Temperature** The ST Miniature Stroke Slide Series can withstand temperatures of up to 150 °C. There are two treatment options for higher temperature applications: T1: 200°C T2: 300°C Applying treatments for higher temperature applications will reduce the load capacity. ## Anti-corrosion feature The ST Miniature Stroke Slide Series is composed of quenched hardened process stainless steel for the rail, block, and steel balls. The block plate and screws are made of stainless steel as well -- providing a great model for maintenance and inspection applications. CDC 44 45 CDC ST MINIATURE STROKE SLIDE SERIES # ST ## 2. Technical Information ## Accuracy The ST Miniature Stroke Slide Series has three grades for accuracy. Precision (P), High (H) and Normal (N). ## **Preload** The ST Miniature Stroke Slide series has two preload classes, V0 and V1, as described in the MR miniature linear guide series preload table. ## Lubrication Lubrication of the ST Miniature Stroke Slide Series can be performed by adding the lubricant onto the raceway of the rail. ## Rating life L The rating life of the ST Miniature Stroke Slide Series can be calculated by formulas (19) and (20), in accordance with ISO 14728-1. # Geometric and positional accuracy of the mounting surface The inaccuracy of the mounting surfaces will affect the running accuracy and reduce the operating lifetime of the ST Miniature Stroke Slide. If the inaccuracies of the mounting surface exceed the values calculated by formulas (15), (21), and (17), the lifetime will be shortened, as calculated by formulas (19) and (20). $$e_1(mm) = b_1(mm) \cdot f_1 \cdot 10^{-4}$$ ——(15) $$e_2(mm) = (\frac{d}{lc} \frac{(mm)}{(mm)}) \cdot f_2 \cdot 10^{-5}$$ (21) $$e_3(mm) = f_3 \cdot 10^{-3}$$ ——(17) # Height and Chamfered Reference Edge The tables for the chamfered reference edge corner and the height of the reference edge for the MR Miniature Linear Guide Series are also suitable for the ST Miniature Stroke Slide Series. ## 3. Ordering Information An example of the ST Miniature Stroke Slide Series part numbering system is shown above. **cpc** | 46 | Model Code | Fabricate Dim | nensions (mm) | | Rail [| Dimensions (m | im) | | | Block Dim | ensions (mm) | | | Model Code | |------------|---------------|----------------|----|----------------|---------------|--------------------|----|----------------|-----------|----------------|------------------|-----|------------| | Model Code | Н | W ₂ | Р | W ₁ | hı | Dxdxg ₁ | Pı | P ₂ | W | h ₂ | Mxg ₂ | t | Model Code | | ST7M | 8 | 5 | 15 | 7 | 4.7 | 4.2x2.4x2.3 | 15 | 12 | 17 | 6.5 | M2x2.5 | 1 | ST7M | | ST9M | 10 | 5.5 | 20 | 9 | 5.5 | 6x3.5x3.5 | 20 | 15 | 20 | 7.8 | M3x3.0 | 1.3 | ST9M | | ST12M | 13 | 7.5 | 25 | 12 | 7.5 | 6x3.5x4.5 | 25 | 20 | 27 | 10 | M3x3.5 | 1.3 | ST12M | | Model Code | Max Stroke | Rail Dimensions (mm)
 | | | Block Dimensions (mm) | | | | Load Capacities (N) | | Static Moment (Nm) | | | |------------|------------|----------------------|------|------|---|-----------------------|------|------|---|-------------------------|----------|--------------------|------|------| | | Ls | Lr | L2 | Lg | N | Lb | Lı | P4 | n | C _{100B} (dyn) | Co(stat) | Mro | Mp₀ | Myo | | ST7M | 27 | 30 | 28 | 6.5 | 1 | 30 | 28 | 6.5 | 1 | 910 | 1580 | 5.9 | 3.4 | 3.4 | | ST7M | 41 | 45 | 43 | 6.5 | 2 | 45 | 43 | 6.5 | 2 | 1220 | 2500 | 9.1 | 8 | 8 | | ST7M | 55 | 60 | 58 | 6.5 | 3 | 60 | 58 | 6.5 | 3 | 1490 | 3330 | 12.4 | 14.6 | 14.6 | | ST9M | 38 | 40 | 38 | 9 | 1 | 40 | 38 | 9 | 1 | 1590 | 2773 | 13.1 | 6.8 | 6.8 | | ST9M | 58 | 60 | 58 | 9 | 2 | 60 | 58 | 9 | 2 | 2080 | 4170 | 19.7 | 16 | 16 | | ST9M | 78 | 80 | 78 | 9 | 3 | 80 | 78 | 9 | 3 | 2520 | 5547 | 26.2 | 29.2 | 29.2 | | ST12M | 44 | 50 | 47.4 | 11.2 | 1 | 50 | 47.4 | 11.2 | 1 | 2550 | 4340 | 27 | 16 | 16 | | ST12M | 69 | 75 | 72.4 | 11.2 | 2 | 75 | 72.4 | 11.2 | 2 | 3350 | 6510 | 40.1 | 35.6 | 35.6 | | ST12M | 94 | 100 | 97.4 | 11.2 | 3 | 100 | 97.4 | 11.2 | 3 | 4050 | 8670 | 54 | 62.8 | 62.8 | **cpc** | 48 # CPC AR/HR Z Series Lubrication Storage Pad Testing Report A linear guide is a category of rolling guidance systems. By using unlimited recirculating stainless steel balls that operate between the raceways of the rail and the runner block, the carriage achieves high precision and low friction linear movement. If the linear guides do not have sufficient lubrication, rolling friction will increase, causing wear and shortened linear guide lifespan. cpc has added and embedded PU lubricant storage pads to prolong the life of the linear guide; the pads directly contact and lubricate the rolling balls. This design supplies sufficient lubrication even in short stroke operations. cpc's design, due to the embedded pads absorption and retention capabilities, results in a product that features a long operation life and long-term lubrication. Following are the results of cpc's in-house testing. ## AR15 Lubrication Storage Pad Testing Data Tested products: AR15 blocks with lubrication storage pads, 8 pieces, and AR15 rails, N accuracy grade, 1500mm Length, 4 pieces | Testing condition | | |------------------------------------|---| | Rating load capacities(each Block) | 1.8KN(C=9KN · C0=17.5KN) | | Stroke | 0.96m | | Max running speed | 1m/s | | Lubricant | DAPHNE SUPER MULTI 68 (Viscosity64.32 CST 400C) | | Lubrication period | No lubrication added during testing period | ### Testing result ## ■ Testing equipment ■ Test results at inspection intervals Inspection intervals 1 and 2 Inspection interval 3 No wear on rail profile Some rail profiles have dried lubricant present. ### Inspection intervals 1 and 2: Lubrication Maintained Upward lubrication storage pads in good condition. - · Lubricant supply in good - condition. No wear on the running profile of the rail. Lubricant supply in good condition. Dried lubricant residue and breakage on the upward lubrication storage pads Dried lubricant residue and breakage on the downward lubrication storage pads. ## Plastic parts and end seal in good condition End seal in good condition ## Test Summary Total continuous running time of 3820 hours and travel distance of 8802 kilometers. Out of eight test blocks, dried lubricant residue appeared on 2 blocks and 1 rail. Dried lubricant residue is indicative of a need for relubrication and thus lengthens the operational life of the linear guide.